Developing Generative AI Applications on AWS

This two-day advanced course is designed for software developers seeking to leverage large language models (LLMs) without fine-tuning, using Amazon Bedrock and LangChain. It covers the basics of generative AI, the foundations of prompt engineering, and architecture patterns for building generative AI applications.

Prerequisites

  • Completion of AWS Technical Essentials
  • Intermediate proficiency in Python

Target Audience

This course is intended for software developers who:

  • Want to integrate generative AI models into their applications
  • Are interested in Amazon Bedrock and LangChain for generative AI use cases

Delegates will learn how to

  • Describe generative AI and its alignment with machine learning
  • Identify the business value of generative AI use cases
  • Plan and mitigate risks in generative AI projects
  • Understand and implement Amazon Bedrock for generative AI applications
  • Apply prompt engineering techniques
  • Build and secure generative AI applications using Amazon Bedrock and LangChain
  • Design and implement architecture patterns for various generative AI use cases

Outline:

Day One

Module 1: Introduction to Generative AI - Art of the Possible

  • Overview of machine learning
  • Generative AI use cases
  • Risks and benefits of generative AI

Module 2: Planning a Generative AI Project

  • Steps in planning
  • Identifying risks and mitigation strategies

Module 3: Getting Started with Amazon Bedrock

  • Introduction to Amazon Bedrock
  • Setting up and using Bedrock in the AWS Console
  • Hands-on demonstration

Module 4: Foundations of Prompt Engineering

  • Basics of prompt engineering
  • Advanced techniques and addressing prompt misuse
  • Mitigating bias in prompts
  • Hands-on demonstration: Prompt fine-tuning and bias mitigation

 

Day Two

Module 5: Amazon Bedrock Application Components

  • Overview of application components (e.g., datasets, embeddings)
  • Introduction to RAG (Retrieval Augmented Generation)
  • Securing applications

Module 6: Amazon Bedrock Foundation Models

  • Amazon Bedrock models and methods
  • Hands-on lab: Zero-shot text generation

Module 7: LangChain

  • Integrating AWS with LangChain
  • Using LangChain agents for prompt templates, chat models, and document loaders
  • Hands-on lab: Building applications with LangChain

Module 8: Architecture Patterns

  • Generative AI architecture patterns
  • Hands-on labs: Text summarisation, chatbots, question answering, and code generation using Amazon Bedrock and LangChain

Glenn Richard Bech

Glenn er systemutvikler og arkitekt, bredt opptatt av skyteknologi, men med spesialisering på Amazon AWS. Han kan bistå med rådgivning, innovasjon, arkitektur og implementasjon på plattformen. Han er sertifisert som arkitekt, og Amazon autorisert instruktør for flere av de offisielle AWS kursene 

Andre relevante kurs

14. april
1 dager
Classroom Virtual
26. mars
3 dager
Classroom Virtual
2. april
3 dager
Classroom Virtual
26. mars
3 dager
Classroom Virtual