Developing Generative AI Applications on AWS
This two-day advanced course is designed for software developers seeking to leverage large language models (LLMs) without fine-tuning, using Amazon Bedrock and LangChain. It covers the basics of generative AI, the foundations of prompt engineering, and architecture patterns for building generative AI applications.
Prerequisites
- Completion of AWS Technical Essentials
- Intermediate proficiency in Python
Target Audience
This course is intended for software developers who:
- Want to integrate generative AI models into their applications
- Are interested in Amazon Bedrock and LangChain for generative AI use cases
Delegates will learn how to
- Describe generative AI and its alignment with machine learning
- Identify the business value of generative AI use cases
- Plan and mitigate risks in generative AI projects
- Understand and implement Amazon Bedrock for generative AI applications
- Apply prompt engineering techniques
- Build and secure generative AI applications using Amazon Bedrock and LangChain
- Design and implement architecture patterns for various generative AI use cases
Outline:
Day One
Module 1: Introduction to Generative AI - Art of the Possible
- Overview of machine learning
- Generative AI use cases
- Risks and benefits of generative AI
Module 2: Planning a Generative AI Project
- Steps in planning
- Identifying risks and mitigation strategies
Module 3: Getting Started with Amazon Bedrock
- Introduction to Amazon Bedrock
- Setting up and using Bedrock in the AWS Console
- Hands-on demonstration
Module 4: Foundations of Prompt Engineering
- Basics of prompt engineering
- Advanced techniques and addressing prompt misuse
- Mitigating bias in prompts
- Hands-on demonstration: Prompt fine-tuning and bias mitigation
Day Two
Module 5: Amazon Bedrock Application Components
- Overview of application components (e.g., datasets, embeddings)
- Introduction to RAG (Retrieval Augmented Generation)
- Securing applications
Module 6: Amazon Bedrock Foundation Models
- Amazon Bedrock models and methods
- Hands-on lab: Zero-shot text generation
Module 7: LangChain
- Integrating AWS with LangChain
- Using LangChain agents for prompt templates, chat models, and document loaders
- Hands-on lab: Building applications with LangChain
Module 8: Architecture Patterns
- Generative AI architecture patterns
- Hands-on labs: Text summarisation, chatbots, question answering, and code generation using Amazon Bedrock and LangChain
Glenn Richard Bech
Glenn er systemutvikler og arkitekt, bredt opptatt av skyteknologi, men med spesialisering på Amazon AWS. Han kan bistå med rådgivning, innovasjon, arkitektur og implementasjon på plattformen. Han er sertifisert som arkitekt, og Amazon autorisert instruktør for flere av de offisielle AWS kursene